Nil Polynomials of Prime Rings
نویسندگان
چکیده
منابع مشابه
Strongly nil-clean corner rings
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
متن کاملCounting Roots of Polynomials Over Prime Power Rings
Suppose $p$ is a prime, $t$ is a positive integer, and $f\!\in\!\mathbb{Z}[x]$ is a univariate polynomial of degree $d$ with coefficients of absolute value $<\!p^t$. We show that for any fixed $t$, we can compute the number of roots in $\mathbb{Z}/(p^t)$ of $f$ in deterministic time $(d+\log p)^{O(1)}$. This fixed parameter tractability appears to be new for $t\!\geq\!3$. A consequence for arit...
متن کاملCommutative Nil Clean Group Rings
In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.
متن کاملCo-centralizing generalized derivations acting on multilinear polynomials in prime rings
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1996
ISSN: 0021-8693
DOI: 10.1006/jabr.1996.0394